

High Quality Raw Materials for the IVD Manufacturing Industry

PRODUCT PERFORMANCE:

- Versatility
- Validation
- Conjugation
- Reproducibility
- Broad spectrum
- Specificity and sensitivity
- Technical support
- Costs reduction and fast delivery

Monobiotinylated proteins

Preserve the specificity of your epitopes by using in vivo monobiotinylated proteins, assuring the interaction with streptavidin outside the antigen surface

Conventional chemical conjugation

A conjugated antigen can be a helpful solution for various issues that can arise during the development of a new IVD test. One common problem caused by most surfaces is the denaturation of proteins due to their high surface hydrophobicity.

Furthermore, the binding events may be affected by the position of the surface and sensor molecules, which could cause a greater steric impact. Moreover, positioning the molecules in a specific orientation could enhance the stability of the attached proteins and make the assay more sensitive by exposing its antigenic regions.

Traditional methods of conjugation are effective for antibodies, but they may not provide consistent results for antigens with less established structures. This may explain why double-antigen sandwich ELISAs (DAgS) are not as widely used for detecting antibodies compared to indirect ELISA.

To avoid compromising the antigenic structure and sensitivity of DAS-ELISAs due to conventional chemical conjugation, the ideal solution is to utilize monobiotinylated proteins.

Why use our monobiotinylated proteins?

Our monobiotinylated proteins are **bonded to a BCCP-tag in the C-terminus, with a lysine residue which is enzymatically biotinylated by the** *E. coli* **biotin ligase BirA**. This single-point labelling technique has many advantages for commonly used binding assays:

- The biotinylation only happens on the lysine residue of the BCCP tag.
- > There is NO interference with the target protein's natural binding activities.
- > The protein orientation is uniform when immobilized on a streptavidin-coated surface such as nanoparticles.

The extremely specific and high affinity binding of biotin by avidin and/or streptavidin (Kd $\approx 10^{-14}$ M) results in specific detection systems of very high sensitivity. A clear advantage of this system is that with a common strep-HRP, we can obtain conjugated complex of all our references without the necessity of performing the peroxidation of each one.

The biotin is fused to a linker which maintains the molecule away to the protein surface, avoiding steric hindrance between the biotin and the antigenic regions involved in Ab-binding. Thus, **the Ab interaction will not be compromised with the conjugation**.

Figure 1. 3D image showing an antigen (green) interacting with the specific Fab region of the Ab (pink). The image also highlights certain amino acids (red) that are typically involved in conjugation procedures. It's important to note that some of these amino acids are part of the epitope region of the protein. If conjugation were to occur with these amino acids, it could interfere with the Ab-binding process and ultimately decrease the antigenic capacity of the protein.

As there is just one biotin per protein molecule, our conjugated proteins will show a **higher inter-lot reproducibility** and this will facilitate the reproducibility of the diagnostic tests developed with them.

Rekom Biotech's monobiotinylated proteins

AIDS (HIV)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
p24	RAG0057BIOT	E. coli	WB, DB, CE, NP, PO	Viral capsid antigen
	CA	NINE BABE	SIOSIS (CANINE PIROPL	ASMOSIS)
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
BcMSA1	RAG0020BIOT	P. pastoris	WB, DB, CE, NP, PO	Merozoite Surface Antigen for Babesia canis
CHAGAS (Trypanosoma cruzi)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
ChimChagas3	RAG0096BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Recombinant chimeric antigen
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
pp52	RAG0090BIOT	E. coli	WB, DB, CE, NP, PO	DNA polymerase processivity subunit
ChimCMV1	RAG0109BIOT	E. coli	WB, DB, CE, NP, PO	Recombinant chimeric antigen
ChimCMV2	RAG0110BIOT	E. coli	WB, DB, CE, NP, PO	Recombinant chimeric antigen
Epstein-Barr virus infection (EBV)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
p18	RAG0049BIOT	E. coli	WB, DB, CE, NP, PO	Viral capsid antigen
Leishmaniasis (Leishmania infantum)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
K39	RAG0061BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Parasite kinesin-related antigen
NAME	CAT NUMBER	SOURCE		DESCRIPTION
NcGRA7	RAG0024BIOT	E. coli	WB, DB, CE, NP, PO	Nc dense granule antigen GRA7
ORAL HERPES produced by HSV-1 (Herpes simpley virus type 1)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
gG1	RAG0017BIOT	E. coli	WB, DB, CE, NP, PO	Recombinant mature glycoprotein G for
			DASS DOLLEN (Oblaum	
NAME			ADDI TCATTON	
Phi n 5a	RAL0003BIOT	E coli	WB DB CE NP PO	Phl n 5a
NAME	CAT NUMBER	SOURCE		DESCRIPTION
Tpp15	RAG0009BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Membrane lipoprotein
Tpp17	RAG0008BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Membrane lipoprotein
Трр47	RAG0010BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Membrane lipoprotein
ChimSyphilis1	RAG0046BIOT	E. coli	WB, DB, CE, DAS, NP, PO	R. chimeric antigen (Tpp17 and Tpp47)
ChimSyphilis2	RAG0064BIOT	E. coli	WB, DB, CE, DAS, NP, PO	R. chimeric antigen (Tpp15 and TmpA)
CEREAL				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
Tri a 19	RAL0053BIOT	E. coli	WB, DB, CE, NP, PO	Omega-5 gliadin, seed storage protein
WB: Western Blot	t	LF:	Lateral Flow	Pack size: 0.1 mg*; 1 mg; bulk

DB: Dot Blot IE: Indirect ELISA DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay CE: Capture ELISA DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised *under availability, for liquid format

Monobiotinylated proteins applications

Protein orientation in streptavidin-coated plates

Detection in IgM capture assays

