

Index

3	RECOMBINANT ANTIGENS FOR ANIMAL	21
4		
6	SYNDROME (FIV)	
8	BABESIOSIS (PIROPLASMOSIS) BORRELIOSIS OR LYME DISEASE	22 23 23
9	CHAGAS	24
10		24 24
10		25
10		25
	NEOSPOROSIS	25
11	TOXOPLASMOSIS	26
12	TUBERCULOSIS	26
12	WEST NILE VIRUS (WNV)	26
12 12	RECOMBINANT ALLERGENS FOR ALLERGIES	27
	INDOOR RECOMBINANT ALLERGENS	29
	POLLEN RECOMBINANT ALLERGENS	31
	MOLD RECOMBINANT ALLERGENS	35
	FOOD RECOMBINANT ALLERGENS	37
	EXTERNAL VALIDATION	40
14	CHIMERAS	41
15	MONOBIOTINYLATED PROTEINS	43
	HDD CONTHICATED DECTETAG	47
	HRP-CONJUGATED PROTEINS	47
	CUSTOM-MADE PROTEINS	49
	IMMUNOASSAY BLOCKERS	51
17	POLYCLONAL ANTIBODIES	53
19	CUSTOM-MADE ANTIBODIES	55
20	TARREST TO THE PARTY OF THE PAR	
	9 10 10 10 11 12 12 12 12 13 13 13 13 14 14 14 15 16 16 16 16 16 17 17 19	ACQUIRED FELINE IMMUNODEFICIENCY SYNDROME (FIV) ANAPLASMOSIS BABESIOSIS (PIROPLASMOSIS) BORRELIOSIS OR LYME DISEASE CHAGAS DIROFILARIASIS EHRLICHIOSIS LEISHMANIOSIS LEPTOSPIROSIS NEOSPOROSIS TOXOPLASMOSIS TUBERCULOSIS WEST NILE VIRUS (WNV) RECOMBINANT ALLERGENS FOR ALLERGIES INDOOR RECOMBINANT ALLERGENS POLLEN RECOMBINANT ALLERGENS HOLD RECOMBINANT ALLERGENS FOOD RECOMBINANT ALLERGENS FOOD RECOMBINANT ALLERGENS CHAGAS HOLD RECOMBINANT ALLERGENS HOLD RECOMBINANT ALLERGENS TOXOPLASMOSIS CHACKER TOXOPLASMOSIS TUBERCULOSIS WEST NILE VIRUS (WNV) RECOMBINANT ALLERGENS TOXOPLASMOSIS TOXOPLASMOSIS TOXOPLASMOSIS TUBERCULOSIS WEST NILE VIRUS (WNV) RECOMBINANT ALLERGENS TOXOPLASMOSIS TOXOPLASMOSIC TOXOPLASMOSIC TOXOPLASMOSIC TOXOPLASMOSIC TOXOPLASMOSIC TOX

PIPELINE	57
QUALITY MANAGEMENT	59
TECHNICAL REPORTS	65
PRODUCT MANIPULATION	67
DISTRIBUTORS	69
PRODUCT INDEX	71

About us

Rekom Biotech is a biotechnology company focused on the design and manufacturing of **IVD reagents for** *in vitro* **diagnostics**. We offer <u>high quality</u>, <u>validated</u> and <u>versatile</u> raw material, suitable for use in the various platforms available on the market, among others: second and third generation ELISAs, immunochromatography, chemiluminescence, Western blot, dot-blot, etc.

We are committed to ensure the highest quality level in the design and manufacturing of our IVD reagents, following a rigorous quality control for each lot produced. Our quality system is certified by **ISO 9001** and **ISO 13485** standards. Besides, as we are manufacturers, we can try to adapt our products to your needs, if any problem arises during the evaluation of our products.

Our portfolio includes a range of **recombinant proteins** for **humans** and **animals** that are designed to diagnostic both **infectious diseases** and **allergies**. These proteins can be utilized for various purposes, such as serving as raw material for antibody tests, acting as internal controls for antigen tests, and even functioning as immunogens to create antibodies. To ensure maximum effectiveness, these proteins are produced through a variety of different expression systems.

Our goal is to improve the antigenicity of protein, enhance sensitivity, and reduce potential specificity problems. Additionally, we provide many of these recombinant proteins in <u>monobiotinylated</u> and <u>HRP-conjugated</u>.

In particular, we have specialized in the design and production of next-generation proteins: chimeras or proteins composed of multiple epitopes, which have improved their antigenic properties, such as sensitivity and specificity. Furthermore, another main advantage of the multi-epitope chimeric proteins is avoiding the use of protein mixtures in your assay. The limited number of binding sites and the different affinities of proteins for these sites could result in reproducibility issues.

In our portfolio you will also find: **polyclonal antibodies**, which can be used as raw material for an antigen test, or as an internal calibrator for an antibody test; and an **inmunoassay blocker** for anti-cross-reactive carbohydrate determinants (CCD) antibodies, with which anti-CCD antibodies will be kidnapped, and the specificity of the assay will increase.

We also offer **custom-made proteins and antibodies** service to support the R&D of IVD manufacturers that want to develop a new assay and cannot find the right reagent.

MISSION

In Rekom Biotech our mission is to offer high quality IVD reagents to be used for *in vitro* diagnosis of human and animal infectious diseases and allergies.

Our working philosophy gives priority to the establishment of alliances and collaborations which will allow us to set up new prototypes and develop new products.

VISION

Rekom Biotech wants to become a reference supplier of IVD reagents for human and animal infectious diseases and allergies.

We like to work closely with IVD manufacturers to understand their problems and provide them with products totally adapted to their needs. In Rekom Biotech, we support our customers through the development process to overcome the challenges of applying the recombinant proteins to a specific platform.

We want to mantain our competitiveness through constant innovation in our products. In order to achieve this goal, we encourage continued training and creativity in our team. We give capital importance to participation and collaboration in scientific projects.

Our facilities

We are located in Spain, Granada, in the PTS, a health sciences scientific park.

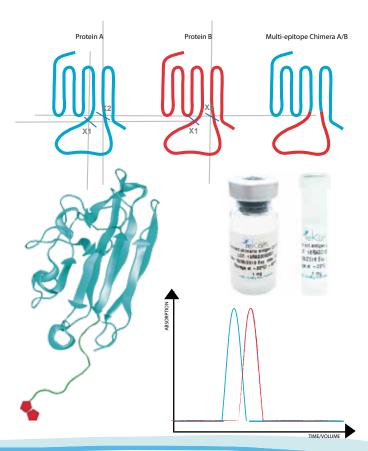
We are surrounded by universities, hospitals, research centers, which we have collaborated with many times, and many important companies.

Product performance

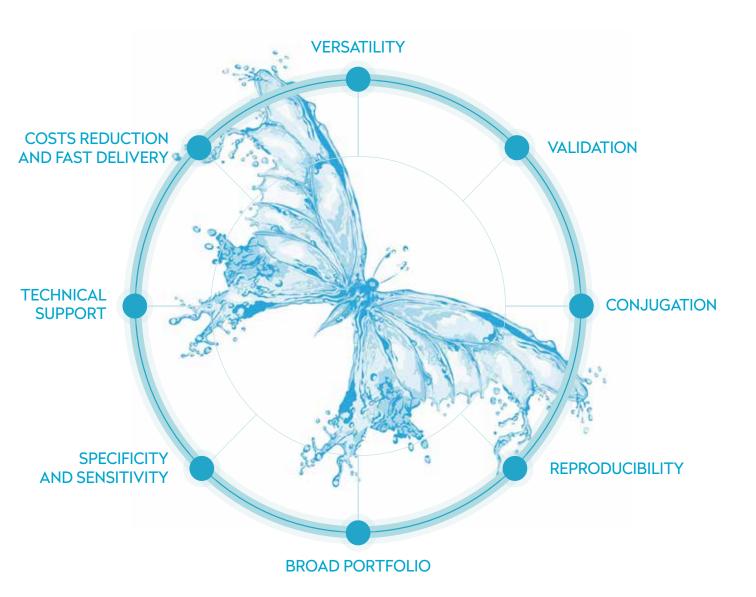
Our recombinant proteins are stored in **highly versarile** buffers, allowing their accessibility to the different IVD platforms in the market. Otherwise, our technical team will do its best to adapt the protein to your platform. Trust in us. We will find the best solution for your system.

Many of our IVD reagents have been **validated** by in-house ELISA assays, with pre-validated positive and negative specimen sera.

Our "ready-to-use" **conjugated proteins** (monobiotinylated and HRP-conjugated), can be used with multiple objectives: plate orientation, nanoparticle and gold binding, as detectors in immunocapture and immunometric formats. In addition, formats such as ELISA-capture or ELISA-DAS (Double Antigen Sandwich), can be used directly to reveal your IVD test.


We guarantee the Lot-to-Lot Consistency (**reproducibility**) of our products. We are certified in ISO 9001 and ISO 13485, which means that all our procedures are protocolized, and we comply with the quality requirements that any company would expect to find in an IVD reagents supplier.

Rekom Biotech offers a **broad portfolio** of IVD reagents. We have many recombinant proteins for IVD manufacturing industry, aimed at the identification of diagnosis of **humans** and **animals** infectious diseases, and **allergies**. We also have **antibodies** for the development of your antigen test, or as an internal calibrator for your antibody test. Besides, we offer **sorbents** for using in *in vitro* diagnostic.


At Rekom Biotech, we have specialized in the design and production of next-generation proteins, recombinant chimeric or multi-epitope proteins, which have improved their antigenic properties such as **sensitivity and specificity**. In other words, these are last-generation IVD reagents which will make your IVD test stand out in the market.

We offer customized **technical support**. Given our extensive experience in the sector and our great technical capacity, we can provide you with whatever you need, even if it is not in the market.

Focused on **reducing** the complexity of **logistics** and the **shipping costs**, we lyophilize all our IVD reagents. The lyophilization significantly reduces the cost of transport, which also does not require dry ice anymore, and facilitates the entry of our products to a greater number of countries, without the need of intermediaries.

HUMAN INFECTIOUS DISEASES

Rekom Biotech offers a wide range of **recombinant proteins** for *in vitro* diagnosis of **human infectious diseases**, including those of zoonotic origin. These proteins will allow you to manufacture your **antibody tests** with a raw material of high quality and reproducibility, viable for any existing diagnostic platform on the market. Given our extensive experience in the sector, we can advise you on what best suits your project. Trust us!

We design and produce recombinant proteins for human infectious diseases in the areas of parasitology, virology, bacteriology, and mycology.

ChimToxo1
ChimToxo1

KMP11 KMP11 1F8 1F8

K39

ChimChagas2 ChimChagas2

p35 (GRA8) p35 (GRA8) FRA

p29 (GRA7)

p30 (SAG1) p30 (SAG1) ChimChagas1
ChimChagas1

ChimChagas3 ChimChagas3

B13

	CHAGAS (Trypanosoma cruzi)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
1F8*	RAG0003	E. coli	WB, DB, IE, DE, CLIA, LF	Calcium-binding flagellar antigen		
B13*	RAG0103	E. coli	WB, DB, IE, DE, CLIA, LF	CA-2 surface antigen, oka. Ag2, PEP2, TcR34		
FRA*	RAG0005	E. coli	WB, DB, IE, DE, CLIA, LF	Cytoskeleton assoc. antigen, oka. Ag1, JL7, H49		
ChimChagas1*	RAG0093	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
ChimChagas2*	RAG0094	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
ChimChagas3*	RAG0096	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
	RAG0096BIOT	E. coli	WB, DB, CE, DAS, NP, PO	ChimChagas3 biotinylated		

*Specific Antibodies: Polyclonal antibody against Chagas (p. 54)

LEISHMANIOSIS (Leishmania infantum)

NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
K39	RAG0061 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Parasite kinesin-related antigen		
	RAG0061BIOT	E. coli	WB, DB, CE, DAS, NP, PO	K39 biotinylated		
KMP11	RAG0038	E. coli	WB, DB, IE, DE, CLIA, LF	Kinetoplastid membrane antigen of 11 kDa		

TOXOPLASMOSIS (Toxoplasma gondii)

NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
p29 (GRA7)*	RAG0083	E. coli	WB, DB, IE, DE, CLIA, LF	Dense granule antigen
p30 (SAG1)*	RAG0011	E. coli	WB, DB, IE, DE, CLIA, LF	Major surface antigen
	RAG0030	P. pastoris	WB, DB, IE, DE, CLIA, LF	p30 (SAG1) in <i>P. pastoris</i>
p35 (GRA8)*	RAG0084	E. coli	WB, DB, IE, DE, CLIA, LF	Dense granule antigen
ChimToxo1*	RAG0058	P. pastoris	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen (SAG1 and GRA8)

*Specific Antibodies: Polyclonal antibody against GRA7/GRA8 and SAG1 (p. 54)

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

VIRUSES EDENV4 EDENV4 **pp28** pp28 gG2 HBeAg HBeAg S1 (RBD) (COVID-19) p138 **p138** ChimCMV1 pp65 ChimCMV1 NP (CTD) (COVID-19) NP (CTD) (COVID-19) ChimCMV3 ChimCMV3 pp150 gG1 gG1 ChimEBV-EA ChimEBV-EA HBcAg HBcAg EBNA1 ChimEBV-VCA ZEBRA **ZEBRA** NP (CTD) ChimCMV2

	AIDS (HIV)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p24	RAG0057	E. coli	WB, DB, IE, DE, CLIA, LF	Viral capsid antigen	
	RAG0057BIOT	E. coli	WB, DB, CE, NP, PO	p24 biotinylated	
			COVID-19 (SARSCOV-2)		
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
NP (CTD)	RAG0071	E. coli	WB, DB, IE, DE, CLIA, LF	SARS-CoV-2 nucleoprotein C-terminal domain	
S1 (RBD)	RAG0074	P. pastoris	WB, DB, IE, DE, CLIA, LF	SARS-CoV-2 S1 Receptor Binding Domain (RBD)	
		COXS	ACKIEVIRUS (coxsackievir		
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
VP1	RAG0028	E. coli	WB, DB, IE, DE	Viral polyprotein. Tucson	
		C	YTOMEGALOVIRUS (CM)		
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
pp52*	RAG0090 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	DNA polymerase processivity subunit	
	RAG0090BIOT	E. coli	WB, DB, CE, NP, PO	pp52 biotinylated	
pp65*	RAG0016	E. coli	WB, DB, IE, DE	Viral tegument phosphoprotein	
pp150*	RAG0091	E. coli	WB, DB, IE, DE, CLIA, LF	Viral matrix phosphoprotein	
new!	RAG0059 🦹	E. coli	WB, DB, IE, DE, CLIA, LF		
ChimCMV1*	RAG0109 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
	RAG0109BIOT	E. coli	WB, DB, CE, NP, PO	ChimCMV1 biotinylated	
ChimCMV2*	RAG0110	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
	RAG0110BIOT	E. coli	WB, DB, CE, NP, PO	ChimCMV2 biotinylated	
ChimCMV3*	RAG0018 new!	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
pp28	RAG0004 new!	E. coli	WB, DB, IE, DE, CLIA, LF	Phosphoprotein	
*Specific Antibodies: Polyclonal antibodies against pp52, pp65 and pp150 (p. 54)					

WB: Western Blot DB: Dot Blot IE: Indirect ELISA DE: positive control in direct ELI

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow
CE: Capture ELISA
DAS: Double antigen sandwich
NP: nanoparticles binding
PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

	DENGUE					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
EDENV4	RAG0070	P. pastoris	WB, DB, IE, DE, CLIA, LF	Dengue Virus envelope protein		
		EF	PSTEIN-BARR VIRUS (EB	V)		
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
EBNA1	RAG0007	E. coli	WB, DB, IE, DE, CLIA, LF	Late nuclear antigen		
	RAG0047 🤶	E. coli	WB, DB, IE, DE			
p18	RAG0049 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Viral capsid antigen		
	RAG0049BIOT	E. coli	WB, DB, CE, NP, PO	p18 biotinylated		
p23	RAG0002	E. coli	WB, DB, IE, DE, CLIA, LF	Viral capsid antigen		
p54	RAG0035 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Early antigen		
p138	RAG0033	E. coli	WB, DB, IE, DE	Early antigen		
ZEBRA	RAG0023	E. coli	WB, DB, IE, DE	Transcription factor, early antigen		
ChimEBV-VCA	RAG0081 new!	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
ChimEBV-EA	RAG0082 new!	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
	GENITAL HERPES produced by HSV-2 (Herpes simplex virus type 2)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
gG2	RAG0087	E. coli	WB, DB, IE, DE, CLIA, LF	Contains the immunogenic regions of the glycoprotein G from the HSV-2		

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow

CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

	HEPATITIS B (HBV)						
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION			
HBcAg*	RAG0056	E. coli	WB, DB, IE, DE, CLIA, LF	Hepatitis B virus core antigen assembled as capsid-like particles			
HBeAg	RAG0062	E. coli	WB, DB, IE, DE, CLIA, LF	HBV e antigen that comprises the 10 aa pre-core sequence plus the 149-residue assembly core			
	*Speci	fic Antibodi	es: Polyclonal antibodies a	gainst HBcAg (p. 54)			
			SARS-CoV (2003)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION			
NP (CTD)	RAG0080	E. coli	WB, DB, IE, DE, CLIA, LF	SARS-CoV nucleoprotein C-terminal domain. 92.5% identity with NP COVID-19.			
	ORAL H	ERPES pro	duced by HSV-1 (Herpe	s simplex virus type 1)			
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION			
gG1	RAG0017	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant mature glycoprotein G for HSV-1			
ne ^{w!}	RAG0017BIOT	E. coli	WB, DB, CE, NP, PO	gG1 biotinylated			
new!	RAG0105	P. pastoris	WB, DB, IE, DE, CLIA, LF				
			WEST NILE VIRUS (WNV)				
NAME	CAT NUMBER						
E	RAG0001	E. coli	WB, DB, IE, DE	Envelope glycoprotein			
	RAG0065	P. pastoris	WB, DB, IE, DE, CLIA, LF				

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

IE: Indirect ELISA
DE: positive control in direct ELISA
CLIA: Chemiluminescent Immunoassay
LF: Lateral Flow
CE: Capture ELISA
DAS: Double antigen sandwich
NP: nanoparticles binding
PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

Top product (Satisfaction guarantee)

BACTERIA

Tpp15 Tpp15

Tpp47 **Tpp47**

ChimSyphilis2
ChimSyphilis2

VLSE VLSE

p44 **p44** LipL21

P30

TmpA
TmpA

LipL32 LipL32

CFP10:ESAT6
CFP10:ESAT6

ospC ospC

Flagellin Flagellin

P1 P1

OMP OMP ChimShypilis1
ChimSyphilis1

Tpp17

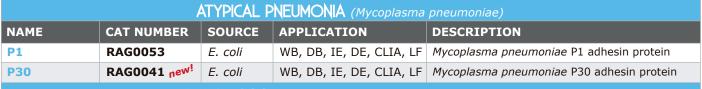
CFP10 CFP10

	ANAPLASMOSIS (Anaplasma phagocytophilum)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p44	RAG0026	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for A.phagocytophilum	
		BOF	RRELIOSIS or LYME DISE	ASE	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
ospC	RAG0042 (Ba)	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for B. afzelli	
	RAG0043 (Bb)	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for B. burgdorferi	
	RAG0034 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for <i>B. garinii</i>	
flagellin B	RAG0054 (Ba)	E. coli	WB, DB, IE, DE, CLIA, LF	Internal central portion of <i>B. afzelii</i> 41 kDa flagelline B protein	
	RAG0055 (<i>Bb</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Internal central portion of <i>B. burgdorferi</i> 41 kDa flagelline B protein	
	RAG0072 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Internal central portion of <i>B. garinii</i> 41 kDa flagelline B protein	
VIsE	RAG0022 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen VIsE for <i>B. garinii</i>	
*	RAG0027 (Bb)	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen VIsE for <i>B. burgdorferi</i>	
	RAG0102 (<i>Ba</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Major variable Surface antigen for B. afzelii	
		LEPTO:	SPIROSIS (Leptospira inte	rrogans)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
LipL32	RAG0077	E. coli	WB, DB, IE, DE, CLIA, LF	Major outer membrane antigen, lipoprotein	
	RAG0063	P. pastoris	WB, DB, IE, DE, CLIA, LF	LipL32 in <i>P. pastoris</i>	
LipL21	RAG0100	P. pastoris	WB, DB, IE, DE, CLIA, LF	The second most abundant protein <i>L. interrogans</i>	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA


DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

TUBERCULOSIS (Mycobacterium tuberculosis, Koch's bacillus)

NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
CFP10 *	RAG0050	E. coli	WB, DB, IE, DE, CLIA, LF	Culture filtrate antigen of 10 kDa
CFP10:ESAT6*	RAG0060	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen

^{*}Specific Antibodies: Polyclonal antibody against Tuberculosis (p. 54)

SYPHILIS (Treponema pallidum)

31F1 ILIO (Treponenia pallidum)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
TmpA	RAG0073	E. coli	WB, DB, IE, DE, CLIA, LF	Membrane lipoprotein
Tpp15	RAG0009	E. coli	WB, DB, IE, DE, CLIA, LF	Membrane lipoprotein
	RAG0009BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Tpp15 biotinylated
Tpp17	RAG0008	E. coli	WB, DB, IE, DE, CLIA, LF	Membrane lipoprotein
	RAG0008BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Tpp17 biotinylated
Tpp47	RAG0010	E. coli	WB, DB, IE, DE, CLIA, LF	Membrane lipoprotein
	RAG0010BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Tpp47 biotinylated
ChimSyphilis1	RAG0046 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen (Tpp17 and Tpp47)
	RAG0046BIOT	E. coli	WB, DB, CE, DAS, NP, PO	ChimSyphilis1 biotinylated
ChimSyphilis2	RAG0064	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen (Tpp15 and TmpA)
	RAG0064BIOT	E. coli	WB, DB, CE, DAS, NP, PO	ChimSyphilis2 biotinylated

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised *under availability for liquid forma

TYPHOID FEVER (Salmonella typhi)						
NAME CAT NUMBER SOURCE APPLICATION DESCRIPTION						
Flagellin	RAG0032	E. coli	WB, DB, IE, DE, CLIA, LF	The flagella antigen of Salmonella typhi		
ОМР	RAG0021	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane protein		

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

Enolase Enolase

Enolase **Enolase**

Enolase Enolase

Enolase Enolase

Enolase Enolase

Enolase Enolase

Enolase Enolase

Enolase Enolase

Enolase Enolase

Enolase Enoalse

Enolase Enolase

Enolase Enoalse

Enolase Enolase

Enolase Enolase

CANDIDIASIS (Candida albicans)				
NAME	IE CAT NUMBER SOURCE APPLICATION DESCRIPTION			
Enolase	RAG0044	E. coli	WB, DB, IE, DE	Antigen corresponding to the glycolytic enzyme 2-phosphoD-glycerate hyidrolyase

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

ANIMAL INFECTIOUS DISEASES

Rekom Biotech also offers **recombinant proteins** for *in vitro* diagnosis of **animal infectious diseases**. Our goal is to offer the *in vitro* diagnostic sector for **veterinary** use, a wide catalog of recombinant proteins for diseases produced in pets and farm animals. Take a look at our portfolio!

Acquired feline immunodeficiency syndrome (FIV)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
gp40	RAG0066	E. coli	WB, DB, IE, DE, CLIA, LF	Transmembrane subunit of the 150 kDa envelope glycoprotein
p24	RAG0013 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Feline immunodeficiency virus (FIV) core antigen p24
p15	RAG0015 new!	E. coli	WB, DB, IE, DE, CLIA, LF	Matrix protein

For diagnosis of the disease in cats.

Anaplasmosis (Anaplasma phagocytophilum)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p44	RAG0026	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for A.phagocytophilum	
For diagnosis of the disease in dogs, cats, horses, sheep and cattle.					

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

BABESIOSIS (PIROPLASMOSIS)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
BcMSA1	RAG0020 (<i>Bc</i>)	P. pastoris	WB, DB, IE, DE, CLIA, LF	Merozoite Surface Antigen for Babesia canis	
	RAG0020BIOT	P. pastoris	WB, DB, CE, NP, PO	BcMSA1 biotinylated	
Bc28.1	RAG0029 (Bc)	E. coli	WB, DB, EI, ED, CLIA, LF	The major member of the Bc28 multigenic family	
BcSA1	RAG0012 (<i>Bc</i>)	E. coli	WB, DB, EI, ED, CLIA, LF	BcSA1 surface antigen for Babesia canis	
ChimBc	RAG0040 (<i>Bc</i>)	E. coli	WB, DB, EI, ED, CLIA, LF	Recombinant chimeric antigen for Babesia canis	
ChimBg new!	RAG0045 (<i>Bg</i>)	E. coli	WB, DB, EI, ED, CLIA, LF	Recombinant chimeric antigen for Babesia gibsoni	

For diagnosis of the disease in dogs.

BORRELIOSIS OF LYME DISEASE					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
ospC	RAG0042 (Ba)	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for B. afzelli	
	RAG0043 (<i>Bb</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for B. burgdorferi	
	RAG0034 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Outer membrane antigen for B. garinii	
flagellin B	RAG0054 (<i>Ba</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Internal central portion of <i>B. afzelii</i> 41 kDa flagelline B protein	
	RAG0055 (<i>Bb</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Internal central portion of <i>B. burgdorferi</i> 41 kDa flagelline B protein	
	RAG0072 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Internal central portion of <i>B. garinii</i> 41 kDa flagelline B protein	
VIsE	RAG0022 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen VIsE for B. garinii	
	RAG0027 (<i>Bb</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen VIsE for <i>B.</i> burgdorferi	
	RAG0102 (<i>Ba</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	Major variable Surface antigen for <i>B. afzelii</i>	

For diagnosis of the disease in dogs, horses and occasionally in beef cattle.

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA

CLIA: Chemiluminescent Immunoassay LF: Lateral Flow

CE: Capture ELISA DAS: Double antigen sandwich

NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

Top product (Satisfaction guarantee)

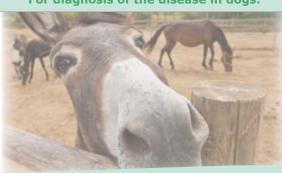
	CHAGAS (Trypanosoma cruzi)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
1F8*	RAG0003	E. coli	WB, DB, IE, DE, CLIA, LF	Calcium-binding flagellar antigen		
B13*	RAG0103	E. coli	WB, DB, IE, DE, CLIA, LF	CA-2 surface antigen, oka. Ag2, PEP2, TcR34		
FRA*	RAG0005	E. coli	WB, DB, IE, DE, CLIA, LF	Cytoskeleton assoc. antigen, oka. Ag1, JL7, H49		
ChimChagas1*	RAG0093	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
ChimChagas2*	RAG0094	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
ChimChagas3*	RAG0096	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen		
	RAG0096BIOT	E. coli	WB, DB, CE, DAS, NP, PO	ChimChagas3 biotinylated		

For diagnosis of the disease in dogs.

*Specific Antibodies: Polyclonal antibody against Chagas (p. 54)

DIROFILARIASIS (Dirofilaria immitis)					
NAME CAT NUMBER SOURCE APPLICATION DESCRIPTION					
ChimDiT33	RAG0014	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant quimeric antigen for <i>Dirofilaria</i> immitis	
F	For diagnosis of the disease in dogs, cats, ferrets, cattle, foxes, covotes, sea lions.				

EHRLICHIOSIS (Ehrlichia canis)					
NAME	AME CAT NUMBER SOURCE APPLICATION DESCRIPTION				
gp19	RAG0025	E. coli	WB, DB, IE, DE, CLIA, LF	Glycoprotein gp19 of Ehrlichia canis	


For diagnosis of the disease in dogs.

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

stunder availability, for liquid format

Top product (Satisfaction guarantee)

LEISHMANIOSIS (Leishmania infantum)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
K39	RAG0061 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Parasite kinesin-related antigen	
	RAG0061BIOT	E. coli	WB, DB, CE, DAS, NP, PO	K39 biotinylated	
KMP11	RAG0038	E. coli	WB, DB, IE, DE, CLIA, LF	Kinetoplastid membrane antigen of 11 kDa	
For diagnosis of the disease in dogs and cats.					

LEPTOSPIROSIS (Leptospira interrogans)						
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
LipL32	RAG0077	E. coli	WB, DB, IE, DE, CLIA, LF	Major outer membrane antigen, lipoprotein		
	RAG0063	P. pastoris	WB, DB, IE, DE, CLIA, LF	LipL32 in <i>P. pastoris</i>		
LipL21	LipL21 RAG0100 P. pastoris WB, DB, IE, DE, CLIA, LF The second most abundant protein L. interrogan					
For diagnosis of the disease in dogs, beef cattle, pigs and horses.						

NEOSPOROSIS (Neospora caninum)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
NcGRA7	RAG0024	E. coli	WB, DB, IE, DE, CLIA, LF	Neospora caninum dense granule antigen GRA7	
	RAG0024BIOT	E. coli	WB, DB, CE, NP, PO	NcGRA7 biotinylated	
For diagnosis of the disease in warm-blooded mammals, mainly dogs and cattle					

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised *under availability, for liquid format

IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

TOXOPLASMOSIS (Toxoplasma gondii)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p29 (GRA7)*	RAG0083	E. coli	WB, DB, IE, DE, CLIA, LF	Dense granule antigen	
p30 (SAG1)*	RAG0011	E. coli	WB, DB, IE, DE, CLIA, LF	Major surface antigen	
	RAG0030	P. pastoris	WB, DB, IE, DE, CLIA, LF	p30 (SAG1) in <i>P. pastoris</i>	
p35 (GRA8)*	RAG0084	E. coli	WB, DB, IE, DE, CLIA, LF	Dense granule antigen	
ChimToxo1*	RAG0058	P. pastoris	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen (SAG1 and GRA8)	

For diagnosis of the disease in warm-blooded animals.

*Specific Antibodies: Polyclonal antibody against GRA7/GRA8 and SAG1 (p. 54)

TUBERCULOSIS (Mycobacterium tuberculosis, Koch's bacillus)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
CFP10 *	RAG0050	E. coli	WB, DB, IE, DE, CLIA, LF	Culture filtrate antigen of 10 kDa
CFP10:ESAT6*	RAG0060	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen

For diagnosis of the disease in cattle.

*Specific Antibodies: Polyclonal antibody against Tuberculosis (p. 54)

WEST NILE VIRUS (WNV)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
E	RAG0001	E. coli	WB, DB, IE, DE	Envelope glycoprotein	
	RAG0065	P. pastoris	WB, DB, IE, DE, CLIA, LF		

For diagnosis of the disease in birds and mammals, common in horses.

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

Top product (Satisfaction guarantee)

Rekom Biotech also offers **recombinant proteins** for *in vitro* diagnosis of allergies (type I allergic disorders).

A wide variety of protean **allergens** from our environment are proteins coming from food, dust mites, pollens from trees and grasses; and other natural products. These environmental proteins come primarily from non-pathogenic eukaryotic organisms (animals and plants) and are essentially innocuous. However, in some cases, our immune system reacts to them, unintentionally causing damage to our tissues and vital organs that occasionally generates serious systemic pathologies.

The development of **recombinant allergens** provides new opportunities for the improvement of the diagnosis of immunoglobulin E (IgE) mediated allergies, given that they present capacity for binding these antibodies in a comparable way to natural allergens and generally show good reactivity in *in vitro* **diagnostic test**. For this reason, recombinant allergens are of a great interest to both the research field and the development of new diagnostic test for **IgE quantification** in the clinical routine. The measure of circulating IgE antibodies specific for a determined allergen provides information about the patient sensitisation to this allergen. In general, low IgE levels would indicate a low probability of developing a clinical disease, while high IgE levels would show a high correlation of developing disease.

Our recombinant allergens have been evaluated by means of an external study developed by a group of prestigious allergists at the Virgen de la Macarena Hospital in Seville (Spain), using samples from positive and negative patient sera. In these tests, specific IgE has been determined by the skin prick test (SPT) and the UniCAP® test. From these assays, we obtained incidence data for each antigen, which we later compared with that described in the literature, obtaining a very good correlation. Through an adequate diagnostic test incorporating our proteins, it would be possible to determine the allergen to which the patient is reacting and the levels of specific IgE to this allergen. This quantification will allow to

bioallergens

predict more accurately the chance of the patient developing an allergy, and thus the need for appropriate treatment.

We design and produce recombinant proteins for allergies caused by domestic animals and indoor allergens, pollen, mold and food. Take a look at our portfolio!

Can f 5

Equ c1

Der f 2
Der f 2

Feld 1 Feld 1

Der p 10
Der p 10

Lep d 2 Lep d 2

bioallergens

	ANIMAL				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Fel d 1	RAL0023 🤶	P. pastoris	WB, DB, IE, DE, CLIA, LF	For Cat (Felis domesticus). Uteroglobin (chain 1)	
Can f 1	RAL0016 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	For Dog (Canis familiaris). Lipocalin	
	RAL0026	P. pastoris	WB, DB, IE, DE, CLIA, LF		
Can f 5	RAL0014 🤶	P. pastoris	WB, DB, IE, DE, CLIA, LF	For Dog urine (<i>Canis familiaris</i>). Arginine esterase, prostatic kallikrein	
Equ c 1	RAL0007	E. coli	WB, DB, IE, DE, CLIA, LF	For Domestic Horse (Equus caballus). Lipocalin	
	RAL0022	P. pastoris	WB, DB, IE, DE, CLIA, LF		
			DUST MITES		
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Der f 2	RAL0013	P. pastoris	WB, DB, IE, DE, CLIA, LF	For American house dust mite (Dermatophagoides farinae). NPC2 family	
Der p 10	RAL0015	E. coli	WB, DB, IE, DE, CLIA, LF	For European house dust mite (<i>Dermatophagoides pteronyssinus</i>). Tropomyosin	
Lep d 2	RAL0008	P. pastoris	WB, DB, IE, DE, CLIA, LF	For Storage mite (<i>Lepidoglyphus destructor</i>). NPC2 family	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

POLLEN

Art v 1

Art v 3

Bet v 1
Bet v 1

Bet v 4
Bet v 4

Parj2

Pla a 1 Pla a 1 Pla a 3 Pla a 3 Sal k 1 Sal k 1

Phl p 5a Phl p 5a

Phl p 12 Phl p 12 Phl p 5b Phl p 5b

Ole e 5

Ole e 1 Ole e 1

0le e 2 Ole e 2 Phl p 1

Phl p 7 Phl p 7

bioallergens

EUROPEAN WHITE BIRCH (Betula verrucosa)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Bet v 1	RAL0011	E. coli	WB, DB, IE, DE, CLIA, LF	Pathogenesis-related protein (PR-10)	
Bet v 4	RAL0009	E. coli	WB, DB, IE, DE, CLIA, LF	Polcalcin	
LONDON PLANE TREE (Platanus acerifolia)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Pla a 1	RAL0019	P. pastoris	WB, DB, IE, DE, CLIA, LF	Invertase inhibitor	
Pla a 3	RAL0021	E. coli	WB, DB, IE, DE, CLIA, LF	Non-specific lipid transfer protein type 1 (LTP)	
MUGWORT POLLEN (Artemisia vulgaris)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Art v 1	RAL0005 🤶	P. pastoris	WB, DB, IE, DE, CLIA, LF	Defensin-like protein	
Art v 3	RAL0006 🤶	E. coli	WB, DB, IE, DE, CLIA, LF	Non-specific lipid transfer protein type 1 (LTP)	
	RAL0048	P. pastoris	WB, DB, IE, DE, CLIA, LF		
OLIVE TREE (Olea europaea)					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Ole e 1	RAL0012	P. pastoris	WB, DB, IE, DE, CLIA, LF	Proteins similar to Ole e 1	
Ole e 2	RAL0010	E. coli	WB, DB, IE, DE, CLIA, LF	Profilin	
Ole e 5	RAL0047	E. coli	WB, DB, IE, DE, CLIA, LF	Superoxide dismutase [Cu-Zn]	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

PELLITORY-OF-THE-WALL (Parietaria judaica)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
Par j 2	RAL0020	P. pastoris	WB, DB, IE, DE, CLIA, LF	Phospholipid transfer protein (LTP)
RUSSIAN THISTLE (Salsola kali)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
Sal k 1	RAL0018	E. coli	WB, DB, IE, DE, CLIA, LF	Pectin methylesterase
TIMOTHY GRASS POLLEN (Phleum pratense)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
Phl p 1	RAL0001	E. coli	WB, DB, IE, DE, CLIA, LF	Beta-expansin
Phl p 5a	RAL0003	E. coli	WB, DB, IE, DE, CLIA, LF	Unknown
	RAL0003BIOT	E. coli	WB, DB, CE, NP, PO	PhI p 5a biotinylated
Phl p 5b	RAL0017	E. coli	WB, DB, IE, DE, CLIA, LF	Unknown
Phl p 7	RAL0002	E. coli	WB, DB, IE, DE, CLIA, LF	Polcalcin
Phl p 12	RAL0004	E. coli	WB, DB, IE, DE, CLIA, LF	Profilin

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow

CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

bioallergens

MOLD

Alt a 1

Alta 1 Alta 1 Alt a 1

Alt a 1 Alt a 1

Alta1
Alta1

Alt a 1 Alt a 1

Alta1
Alta1

Alt a 1 Alt a 1

ALTERNARIA PLANT ROT FUNGUS (Alternaria alternata)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION
Alt a 1	RAL0025	P. pastoris	WB, DB, IE, DE, CLIA, LF	Unknown

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich ELISA

NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

Top product (Satisfaction guarantee)

bioallergens

FOOD

Tria 19 Tria 19

Ara h 9
Ara h 9

Ara h 2 Ara h 2

aS1-casein aS1-casein

β-lactoglobulin β-lactoglobulin

aS2-casein

a-lactalbumin

Gal d 1

Gad c 1
Gad c 1

к-casein К-casein

β-casein β-casein

Mal d 3 Mal d 3

bioallergens

	CEREAL					
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
Tri a 19	RAL0053	E. coli	WB, DB, IE, DE	For Wheat (<i>Triticum aestivum</i>). Omega-5 gliadin, seed storage protein		
	RAL0053BIOT	E. coli	WB, DB, CE, NP, PO	Tri a 19 biotinylated		
			FISH			
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
Gad c 1	RAL0035	E. coli	WB, DB, IE, DE, CLIA, LF	For Baltic cod (<i>Gadus callarias</i>). Beta-parvalbumin		
			EGG			
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
Gal d 1	RAL0033	P. pastoris	WB, DB, IE, DE, CLIA, LF	For Chicken egg (<i>Gallus domesticus</i>). Ovomucoid		
			MILK			
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
aS1-casein	RAL0027	E. coli	WB, DB, IE, DE, CLIA, LF	For Caw milk (<i>Bos domesticus</i>). Casein, oka. Bos d 9		
β-casein	RAL0029	E. coli	WB, DB, IE, DE, CLIA, LF	For Caw milk (<i>Bos domesticus</i>). Casein, oka. Bos d 11		
β-lactoglobulin	RAL0032	P. pastoris	WB, DB, IE, DE, CLIA, LF	For Caw milk (<i>Bos domesticus</i>). Beta-lactoglobulin, oka. Bos d 5		
α-lactalbumin	RAL0031	E. coli	WB, DB, IE, DE, CLIA, LF	For Caw milk (<i>Bos domesticus</i>). Alpha-lactalbumin, oka. Bos d 4		
aS2-casein	RAL0028 new!	E. coli	WB, DB, IE, DE, CLIA, LF	For Caw milk (<i>Bos domesticus</i>). Casein, oka. Bos d 10		
к-casein	RAL0030 new!	E. coli	WB, DB, IE, DE	For Caw milk (<i>Bos domesticus</i>). Casein, oka. Bos d 12		

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

Top product (Satisfaction guarantee)

PEANUT, GROUNDNUT						
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
Ara h 9	RAL0049 new!	P. pastoris	WB, DB, IE, DE, CLIA, LF	For peanut, groundnut (<i>Arachis hypogaea</i>). Nonspecific lipid-transfer protein type 1		
Ara h 2	RAL0040 new!	P. pastoris	WB, DB, IE, DE, CLIA, LF	For peanut, groundnut (<i>Arachis hypogaea</i>). Conglutin (2S albumin)		
			ROSACEOUS			
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION		
Mal d 3	RAL0039	E. coli	WB, DB, IE, DE, CLIA, LF	For Apple (<i>Malus domestica</i>). Non-specific lipid transfer protein type 1 (nsLTP1)		

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow

CE: Capture ELISA

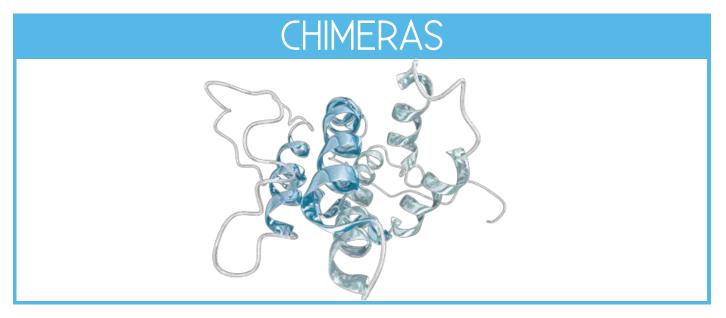
DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised *under availability, for liquid format

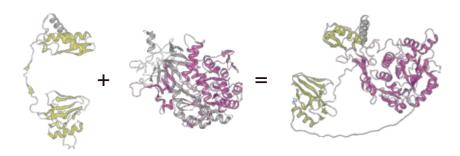
bioallergens

External validation

Our bioallergens have been evaluated in an external study carried out at a Spanish hospital by a group of allergists with positive and negative serum samples from patients. The evaluation of the recombinant allergens has been performed by means of an *in-house* ELISA assay. In this immunoassay, it has been determined the presence of specific IgE in sera that had previously been validated by skin prick testing (SPT) and the UniCAP® test. The sera panels specific for each group of allergens were composed of 25 positive sera and 10 total IgE negative specimen sera.


The following chart shows the good correlation found between the incidence rates described in bibliography and the incidence rates found in the external study carried out by the hospital with our bioallergens:

00000			INCIDENCE RATES		
GROUP	ALLERGEN	CAT NUMBER	BIBLIOGRAPHY HOSPITAL VALIDATION 70%-100% 92% 60%-93% 60% 60%-93% 56% 10% 44% 20% 36% 70% 100% 20%-47% 40% 90% 84%-100% 90% 76%-84% 98% 78% 5.6% 5.6% >75% 72%	HOSPITAL VALIDATION	
	Phl p 1	RAL0001	70%-100%	92%	
	Phl p 5a	RAL0003	60%-93%	60%	
Timothy grass	Phl p 5b	RAL0017	60%-93%	56%	
	Phl p 7	RAL0002	10%	44%	
	Phl p 12	RAL0004	20%	36%	
Olive	Ole e 1	RAL0012	70%	100%	
Olive	Ole e 2	RAL0010	20%-47%	40%	
	Can f 1	RAL0016	90%	84%-100%	
Animal epithelial	Fel d 1	RAL0023	90%	76%-84%	
	Der f 2	RAL0013	98%	78%	
Dust mites	Der p 10	RAL0015	5.6%	5.6%	
	Lep d 2	RAL0008	>75%	72%	
Russian thistle	Sal k 1	RAL0018	66.66%	67.67%	


ONGOING RESEARCH FOR OTHER ALLERGEN GROUPS

At Rekom Biotech, we use computational methods to access structural models of antigenic molecules. This allows us to select specific antigenic domains from different proteins. We then combine them using long, short, flexible, or rigid linkers to enable simultaneous interaction of every epitope with its corresponding paratope. By avoiding steric hindrance, by using the appropriate linker, two or three different antibodies can interact with the multi-epitope molecule, **increasing sensitivity**. Our chimeric multi-epitope proteins are also **highly specific** as we select domains that differentiate this microorganism from its counterparts.

In addition, using <u>multi-epitope chimeric proteins</u> has another significant benefit of **eliminating the need for protein mixtures in assays**. When using protein mixtures, the limited number of binding sites and varying affinities of proteins for these sites may lead to issues with reproducibility.

NAME	CAT NUMBER	SOURCE	APPLICATION	DISEASE / MICROORGANISM
ChimBc	RAG0040 (Bc)	E. coli	WB, DB, IE, DE, CLIA, LF	Babesiosis (or piroplasmosis)
ChimBg	RAG0045 (Bg)	E. coli	WB, DB, IE, DE, CLIA, LF	
ChimChagas1	RAG0093	E. coli	WB, DB, IE, DE, CLIA, LF	Chagas (<i>Trypanosoma cruzi</i>)
ChimChagas2	RAG0094	E. coli	WB, DB, IE, DE, CLIA, LF	
ChimChagas3	RAG0096	E. coli	WB, DB, IE, DE, CLIA, LF	
	RAG0096BIOT	E. coli	WB, DB, CE, DAS, NP, PO	
ChimCMV1	RAG0109	E. coli	WB, DB, IE, DE, CLIA, LF	Cytomegalovirus
	RAG0109BIOT	E. coli	WB, DB, CE, NP, PO	
ChimCMV2	RAG0110	E. coli	WB, DB, IE, DE, CLIA, LF	
	RAG0110BIOT	E. coli	WB, DB, CE, NP, PO	
ChimCMV3	RAG0018	E. coli	WB, DB, IE, DE, CLIA, LF	
ChimDiT33	RAG0014	E. coli	WB, DB, IE, DE, CLIA, LF	Dirofilariasis (Dirofilaria immitis)
ChimEBV-EA	RAG0082	E. coli	WB, DB, IE, DE, CLIA, LF	Epstein-Barr virus
ChimEBV-VCA	RAG0081	E. coli	WB, DB, IE, DE, CLIA, LF	
ChimSyphilis1	RAG0046	E. coli	WB, DB, IE, DE, CLIA, LF	Syphilis (<i>Treponema pallidum</i>)
	RAG0046BIOT	E. coli	WB, DB, CE, DAS, NP, PO	
ChimSyphilis2	RAG0064	E. coli	WB, DB, IE, DE, CLIA, LF	
	RAG0064BIOT	E. coli	WB, DB, CE, DAS, NP, PO	
ChimToxo1	RAG0058	P. pastoris	WB, DB, IE, DE, CLIA, LF	Toxoplasmosis (Toxoplasma gondii)
CFP10:ESAT6	RAG0060	E. coli	WB, DB, IE, DE, CLIA, LF	Tuberculosis (Mycobacterium tuberculosis)
VISE	RAG0027 (Bb)	E. coli	WB, DB, IE, DE, CLIA, LF	Lyme borreliosis
	RAG0022 (<i>Bg</i>)	E. coli	WB, DB, IE, DE, CLIA, LF	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

stunder availability, for liquid format

MONOBIOTINYLATED PROTEINS

In Rekom Biotech we have developed a product line of monobiotinylated proteins, offering some of our catalog numbers with a biotin in their C-terminus. This molecule allows the specific interaction of biotinylated proteins to streptavidin.

Our biotinylated proteins are bonded to a BCCP-tag in the C-terminus, with a lysine residue which is enzymatically biotinylated by the E. coli biotin ligase BirA. This single-point labelling technique has many advantages for commonly used binding assays:

- The biotinylation only happens on the lysine residue of the BCCP tag.
- There is NO interference with the target protein's natural binding activities.
- The protein orientation is uniform when immobilized on a streptavidin-coated surface such as nanoparticles.

	AIDS (HIV)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p24	RAG0057BIOT	E. coli	WB, DB, CE, NP, PO	Viral capsid antigen	
		CANINE BAB	ESIOSIS (CANINE PIROF	PLASMOSIS)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
BcMSA1	RAG0020BIOT	P. pastoris	WB, DB, CE, NP, PO	Merozoite Surface Antigen for <i>Babesia canis</i>	
		C	HAGAS (Trypanosoma cruz	zi)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
ChimChagas3	RAG0096BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Recombinant chimeric antigen	
		C	YTOMEGALOVIRUS (CM)	/)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
pp52	RAG0090BIOT	E. coli	WB, DB, CE, NP, PO	DNA polymerase processivity subunit	
ChimCMV1	RAG0109BIOT	E. coli	WB, DB, CE, NP, PO	Recombinant chimeric antigen	
ChimCMV2	RAG0110BIOT	E. coli	WB, DB, CE, NP, PO	Recombinant chimeric antigen	
		Epste	ein-Barr virus infection	(EBV)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p18	RAG0049BIOT	E. coli	WB, DB, CE, NP, PO	Viral capsid antigen	
		Leish	maniasis (Leishmania infa	intum)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
K39	RAG0061BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Parasite kinesin-related antigen	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

	NEOSPOROSIS (Neospora caninum)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
NcGRA7	RAG0024BIOT	E. coli	WB, DB, CE, NP, PO	Nc dense granule antigen GRA7	
	ORAL HE	RPES prod	duced by HSV-1 (Herpe	es simplex virus type 1)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
gG1	RAG0017BIOT	E. coli	WB, DB, CE, NP, PO	Recombinant mature glycoprotein G for HSV-1	
		TIMOTHY	GRASS POLLEN (Phleum	n pratense)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Phl p 5a	RAL0003BIOT	E. coli	WB, DB, CE, NP, PO	PhI p 5a	
		SY	PHILIS (Treponema pallidu	m)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Tpp15	RAG0009BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Membrane lipoprotein	
Tpp17	RAG0008BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Membrane lipoprotein	
Tpp47	RAG0010BIOT	E. coli	WB, DB, CE, DAS, NP, PO	Membrane lipoprotein	
ChimSyphilis1	RAG0046BIOT	E. coli	WB, DB, CE, DAS, NP, PO	R. chimeric antigen (Tpp17 and Tpp47)	
ChimSyphilis2	RAG0064BIOT	E. coli	WB, DB, CE, DAS, NP, PO	R. chimeric antigen (Tpp15 and TmpA)	
			CEREAL		
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
Tri a 19	RAL0053BIOT	E. coli	WB, DB, CE, NP, PO	Omega-5 gliadin, seed storage protein	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow

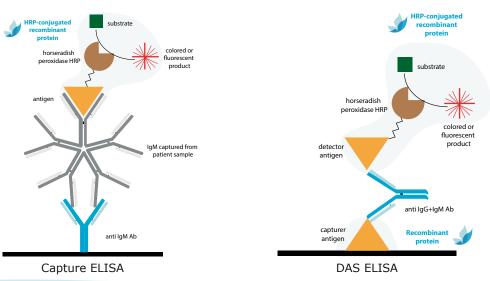
CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

Top product (Satisfaction guarantee)



HRP-CONJUGATED PROTEINS

In case you want to develop a Capture ELISA or a Double Antigen Sandwich (DAS) ELISA assay and you do not have time or means to conjugate our protein to HorseRadish Peroxidase (HRP), we offer HRP-conjugated proteins for some of our catalog numbers.

	CHAGAS (Trypanosoma cruzi)				
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
ChimChagas1	RAG0093	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
ChimChagas2	RAG0094	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
ChimChagas3	RAG0096	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
		C	YTOMEGALOVIRUS (CM)	V)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
pp52	RAG0090	E. coli	WB, DB, IE, DE, CLIA, LF	DNA polymerase processivity subunit	
pp150	RAG0091	E. coli	WB, DB, IE, DE, CLIA, LF	Viral matrix phosphoprotein	
ChimCMV1	RAG0109	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant chimeric antigen	
		Epste	ein-Barr virus infection	(EBV)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
p18	RAG0049	E. coli	WB, DB, IE, DE, CLIA, LF	Viral capsid antigen	
		Leish		antum)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
К39	RAG0061	E. coli	WB, DB, IE, DE, CLIA, LF	Parasite kinesin-related antigen	
	ORAL H	ERPES prod	duced by HSV-1 (Herpes	s simplex virus type 1)	
NAME	CAT NUMBER	SOURCE	APPLICATION	DESCRIPTION	
gG1	RAG0017	E. coli	WB, DB, IE, DE, CLIA, LF	Recombinant mature glycoprotein G for HSV-1	

WB: Western Blot DB: Dot Blot IE: Indirect ELISA

DE: positive control in direct ELISA CLIA: Chemiluminescent Immunoassay

LF: Lateral Flow CE: Capture ELISA

DAS: Double antigen sandwich NP: nanoparticles binding PO: plate orientation

Pack size: 0.1 mg*; 1 mg; bulk Format: liquid; lyophilised

*under availability, for liquid format

If you are a manufacturer of *in vitro* diagnostic tests, and you want to develop a new assay, but you cannot find the right appropriate IVD reagent on the market, we offer our design and production service of custom-made **recombinant proteins**. This service includes the initial design of the protein and its optimal production in **Escherichia coli** or in **Pichia pastoris** as heterologous expression systems.

We like to work closely with our customers to understand their problems and provide them with products totally adapted to their needs. Do not hesitate to contact us! We will develop a custom plan to help you develop the test you are looking for.

SERVICE DETAILS

- ▶ The price of the service guarantees 3 to 5 mg of protein.
- ▶ Purity greater than 95%, analysed by SDS-PAGE Coomassie-stained gels.
- ▶ The purified protein can be sent with dry ice (liquid form) or at room temperature (lyophilized form), depending on the destination country.
- ▶ A detailed data-sheet including the characteristics of the recombinant protein and QC performed will be provided.
- ▶ The protein will be avaliable for futher bulk orders at reduced price by increasing the required amounts.
- ▶ The custom-made service project will be divided into various work milestones. Each milestone will consist of a series of phases whose development will be explained in the quotation.

Study of the project

codon optimization of the gene,

DNA construction

Amplification by PCR, clone of the the selected clone by sequencing of using different fusion tails and

Optimisation of expression levels

and solubility, MCB and WCB reproducibility of future lots, etc.

Storage in sterile labeled plastic vials at -80°C until release. refrigerant. Possibility of offering

Upstream procedure

Obtention of the seed in batch by scale-up to

on the project progress

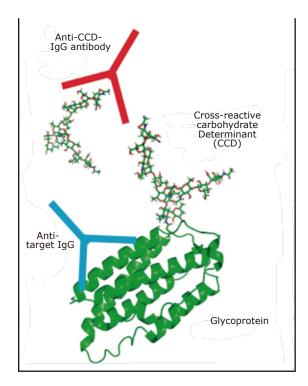
Quality control

Formulation

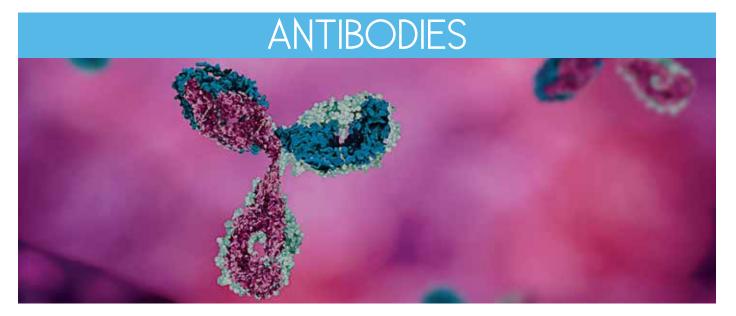
Optimization of the formulation of the protein storage buffer based

Downstream procedure

Design of the complete process of purification of the target protein

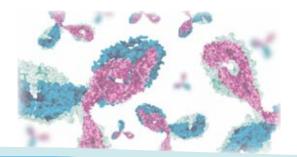

At Rekom Biotech we want to offer you more than just raw material for your *in vitro* diagnostics tests. That is why we have created a line of immunoassay blockers, so you can add them to your IVD assays and solve some of the problems you find in your workday routine.

Immunoassay blockers are used in diagnostic assays to reduce non-specific binding and other interference than could lead to false-positive results and, thus, an incorrect diagnosis. The blockers work by reducing the non-specific binding, increasing the signal-to-noise ratio. They can avoid (i) unspecific interactions with the solid-phase, and non-target proteins; (ii) and specific interactions with endogenous antibodies present within the specimen sample, which are not the specific target antibodies. An example of the latter are antibody interferences from HAMA, HA, RF and IgG (for IgM detection).


NAME	CAT NUMBER	DESCRIPTION
Blocker for anti-cross-reactive carbohydrate determinants (CCD) antibodies	SOR0001	Solution of several glycoconjugates

Pack size: 1 mg Format: lyophilised

Some human normal sera contains IgG antibodies against mannan from various pathogenic Candida species. This makes them able to interact with CCD structures of the proteins produced in *Pichia pastoris*. With the addition of this blocker, the anti-CCD antibodies will be kidnapped, so the specificity of the assay will increase.



In Rekom Biotech we have opted for a new range of antibodies for the *in vitro* diagnostic industry, starting with **polyclonal antibodies.**

Polyclonal antibodies are able to recognize multiple epitopes of an antigen, and this usually leads to a strong signal. Furthermore, we reduce the broader background obtained by using an affinity chromatography. They are the right ones to choose when you need cost efficient and high affinity antibodies. They are mainly used in capture assays of a specific antigen in specimen samples (antigen test).

Our goal is to offer the *in vitro* diagnostics sector a growing catalog of polyclonal antibodies, starting with those corresponding to our most requested proteins. Take a look at our portfolio!



			CYTOMEGALOV	IRUS (CMV)	
NAME	CAT NUMBER	SOURCE	IMMUNOGEN	APPROX. TITER	DESCRIPTION
Anti-pp52	PAB0001	Rabbit	RAG0090 (p. 12)	WB: 1/3,000-1/3,500 ELISA: 1/25,600-1/51,200	Polyclonal antibody against pp52
Anti-pp150	PAB0002	Rabbit	RAG0091 (p. 12)	WB: 1/3,000 ELISA: 1/12,800 - 1/25,600	Polyclonal antibody against pp150
Anti-pp65	PAB0003	Rabbit	RAG0016 (p. 12)	WB: 1/4,500-1/5,000 ELISA: 1/51,200-1/102,400	Polyclonal antibody against pp65
	Anti-cro	ss-reactive	e carbohydrate o	determinants (CCD) antibo	dies
NAME	CAT NUMBER	SOURCE	IMMUNOGEN	APPROX. TITER	DESCRIPTION
Anti-CCD	PAB0004	Rabbit	SOR0001 (p. 42)	WB: 1/4,500-1/5,000 ELISA: 1/102,400-1/204,800	Polyclonal antibody against CCD
		TOX	OPLASMOSIS (TO	oxoplasma gondii)	
NAME	CAT NUMBER	SOURCE	IMMUNOGEN	APPROX. TITER	DESCRIPTION
Anti-GRA7/ GRA8	PAB0005	Rabbit	RAG0083 (p. 10) RAG0084 (p. 10)	WB: 1:8,000-1:10,000 ELISA: 1/25,600 -1/204,800	Polyclonal antibody against GRA7 and GRA8
Anti-p30 (SAG1)	PAB0010 new!	Rabbit	RAG0030 (p.10)	WB: 1:2,000-1:4,000 ELISA: 1/800 -1/102,400	Polyclonal antibody against SAG1
			CHAGAS (Trypand	osoma cruzi)	
NAME	CAT NUMBER	SOURCE	IMMUNOGEN	APPROX. TITER	DESCRIPTION
Anti-Chagas	PAB0007 new!	Rabbit	RAG0003 (p. 10) RAG0005 (p. 10) RAG0103 (p. 10)	WB: 1:8,000-1:10,000 ELISA: 1/1,638,400 - 1/12,800	Polyclonal antibody against 1F8, FRA and B13
			HEPATITIS B	(HBV)	
NAME	CAT NUMBER	SOURCE	IMMUNOGEN	APPROX. TITER	DESCRIPTION
Anti-HBcAg	PAB0008 new!	Rabbit	RAG0056 (p. 14)	WB: 1:8,000-1:10,000 ELISA: 1/6,400 - 1/819,200	Polyclonal antibody against HBcAg
	TL	BERCULOS	S (Mycobacterium	tuberculosis (Koch's bacillus)	
NAME	CAT NUMBER	SOURCE	IMMUNOGEN	APPROX. TITER	DESCRIPTION
Anti-TB	PAB0009 new!	Rabbit	RAG0060 (p. 17)	WB: 1:8,000-1:10,000 ELISA: 1/6,400 - 1/819,200	Polyclonal antibody against CFP10, ESAT6.

Pack size: 0.1 mg; 0.5 mg Format: lyophilised

If you are a manufacturer of in vitro diagnostic tests, and you want to develop a new assay, but you cannot find the appropriate antibody on the market, we offer our production service of custom-made **polyclonal antibodies**.

We like to work closely with our customers to understand their problems and provide them with products totally adapted to their needs. Do not hesitate to contact us! We will develop a custom plan to help you develop the test you are looking for.

SERVICE DETAILS

- ▶ The price of the service guarantees up to 10 mg of antibody, aliquoted in 1 mg fractions.
- ▶ The purified antibody can be sent with dry ice (liquid form) or at room temperature (lyophilised form), depending on the destination country.
- A detailed data-sheet including the characteristics of the antibody and QC performed will be provided.
- ▶ The custom-made service project will be divided into various work milestones. Each milestone will consist of a series of phases whose development will be explained in the quotation.

Antibody generation Immunization of a 10-week-old

Immunization of a 10-week-old New Zealand white rabbit (female). Inoculations with a total of 5 mg of protein and bleeding at 3 months (approximately)

Antibody delivery

Storage in sterile labeled plastic vials at -80°C until release. Shipped with dry ice as a refrigerant. Possibility of offering lyophilized antibody

Project information

Keeping you constantly informed on the project progress

Antibody purificationPurification of the antibody

obtained from immune blood by affinity chromatography (protein G)

Validation and quality control

ELISA and Western blot titration using the protein inoculated to the rabbit

At Rekom Biotech we carry out R&D&i projects for the development of new high quality IVD reagents for the *in vitro* diagnosis of human and animal infectious diseases, and allergies. Below we detail the IVD reagents that are under development.

If you are interested in other projects, do not hesitate to contact us and we will prepare a detailed quotation for the IVD reagent you want, because we also offer custom-made proteins.

Recombinant allergens

Design

Protein design from scratch, always trying to improve its antigenic capacity.

Verification

Search for the best DNA construction according to the design phase.

Expression system

Selection of the best expression system for the protein.

USP/DSP process tuning

Process adjustments to achieve an optimal seed, and the process to isolate our protein from the obtained seed.

Validation

Validation and full quality control.

Cas s 5 for Castanea sativa (allergy)

USP/DSP process tuning

Jug r 1 for *Juglans regia* (allergy)

USP/DSP process tuning

Recombinant antigens

Design

Protein design from scratch, always trying to improve its antigenic capacity.

Verification

Search for the best DNA construction according to the design phase.

Expression system

Selection of the best expression system for the protein.

USP/DSP process tuning

Process adjustments to achieve an optimal seed, and the process to isolate our protein from the obtained seed.

Validation

Validation and full quality control.

ChimASFV for African swine fever (ASF) (animal)

Validation

ChimLip for Leptospirosis caused by *Leptospira interrogans* (human, animal)

Validation

ChimMp for Mycoplasma pneumoniae Infection (human)

Validatio

EDIIIDENV-4 isotypes for Dengue caused by Flavivirus (human)

Validation

VLP (core HBV) for Hepatitis B (human)

Validation

p130 for Cytomegalovirus infection (CMV) (human)

USP/DSP process tuning

EDENV1 for Dengue caused by *Flavivirus* (human)

USP/DSP process tuning

EDENV2 for Dengue caused by *Flavivirus* (human)

USP/DSP process tuning

EDENV3 for Dengue caused by *Flavivirus* (human)

USP/DSP process tuning

CagA (Domain I) for *Helicobacter pylori* Infection (human)

Desian

CagA (Domain III) for Helicobacter pylori Infection (human)

Design

ChimHCV1 for Hepatitis C (human)

Design

HBsAg for Hepatitis B (human)

Design

p28/p30 for Ehrlichiosis caused by *Ehrlichia canis* (animal)

Design

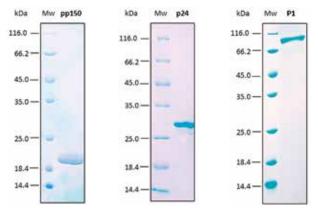
QUALITY MANAGEMENT

Rekom Biotech is committed to ensure the highest quality level in the design and production of raw material for the IVD manufacturing industry.

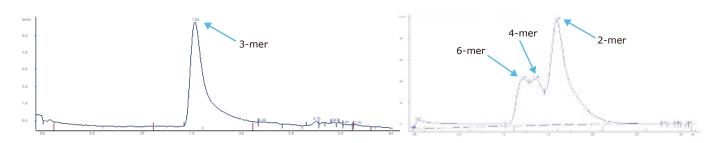
Rekom Biotech products are designed, developed, manufactured and distributed according to our Quality Management System that is **certified by ISO 9001:2015 and ISO 13485:2016 standards**. Our IVD reagents are always manufactured according to Standard Operating Procedures (SOPs) and undergo rigorous quality controls in our laboratories.

We are authorised to work with genetic modified organisms (GMO), with the license number A/ES/19/I-22, issued by National Biosafety Commission.

We are registered as a **Innovative SME**.

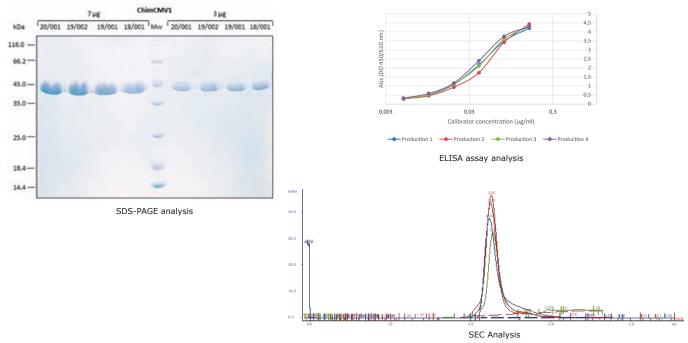

Each lot is subjected to various quality controls:

Concentration detection by spectrophotometry

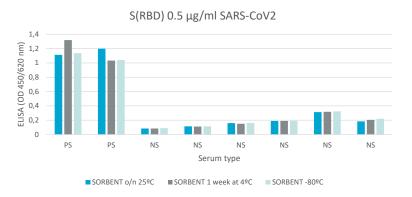

As the determination of accurate extinction coefficients is straightforward, ultraviolet absorption spectroscopy is preferred over chemical methods, such as the Lowry or Bradford methods. The measurement of the protein concentration is performed with the theoretical extinction coefficient of the recombinant protein obtained from Gill and von Hippel, 1989.

However, for proteins that do not contain any Trp residues, experience shows that this could result in more than 10% error in the computed extinction coefficient. Therefore, we measure the protein concentration by using the colorimetric assay based on the interaction between Coomassie brilliant blue and the arginine and aromatic residues (Bradford Method) with a maximum absorption shift from 470 nm to 595 nm (Bradford, 1976).

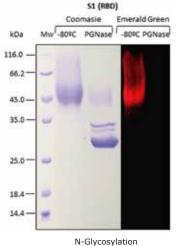
Purity determination by SDS-PAGE

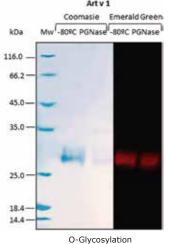


Aggregates, multimers or degraded species analysis by size-exclusion chromatography (SEC)

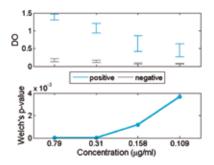


Lot-to-Lot Consistency. Reproducibility analyses are performed by SDS-PAGE, SEC and ELISA assay. Excellent replicability of the production process.

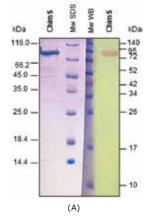

Storage Stability. Relative stability with immunoassay analysis at different ambient conditions is performed.

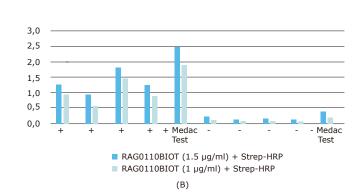


Stability of the sorbent effect at different storage times

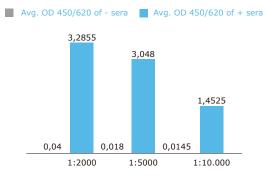


• Glycosylation Analysis. For recombinant proteins produced in *Pichia pastoris*, the N-glycosylation and O-glycosylation are analysed.

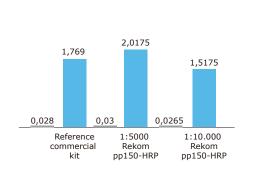

Immunological analyses by ELISA or Western Blot assays. For further information, take a look at our technical report "Titration Experiments" in https://www.rekombiotech.com/en/support/scientific-technical-information.



In this plot, the optical density at 450/620 nm for positive (blue) and negative (gray) **IgG** sera are compared for each concentration of the recombinant antigen. An appropriate statistical test of significance for the comparison of means between both groups, the Welch's test, is employed. Eligible concentrations for the use of the antigen should present statistically significant differences between positive and negative sera. This happens when the intervals at the top do not overlap and, equivalently, when the p-value at the bottom is below 0.05. In the present figure, all p-values are below 0.05 and thus the intervals do not overlap. Therefore, any of the showed concentrations can be used to distinguish between positive and negative sera.



Biotin conjugation. Our *in vivo* monobiotinylated antigens are analysed with a western blot assay with conjugated streptavidin (A) and several ELISA assays (indirect ELISA assay in streptavidin-coated microtiter plates, capture ELISA assay with the biotinylated recombinant antigen as detector and double-antigen-sandwich ELISA assay (B)).



Peroxidase (HRP) conjugation. As an internal quality control of an ELISA capture format, we also conjugate our antigens with peroxidase as internal quality control by using the biomarker as a developer. We perform a capture ELISA assay by using a commercial test and a double-antigen-sandwich ELISA assay.

A double antigen sandwich ELISA assay (DAS) performed with positive and negative CMV IgM specimen sera pre-validated with the ELISA capture IgM VIDAS.

Avg. OD 450/620 of - sera Avg. OD 450/620 of + sera

A capture ELISA assay performed with two different dilutions of the Rekom pp150-HRP in a reference commercial test (CMV-IgM-eLA test PKS medac).

Take a look at our technical reports at https://www.rekombiotech.com/en/scientific-technical-information:

- Tritation Experiments
- Leishmania Recombinant Antigens KMP11 and K39
- > Optimization of the recombinant EBV nuclear antigen quality by improving its integrity in Escherichia Coli
- Recombinant chimeric antigen VIsE for Borrelia burgdorferi
- Evaluation of a CMV chimeric recombinant antigen, ChimCMV1, by indirect and capture elisa assays. Comparison with other CMV antigens
- Evaluation of syphilis antigens Tpp17 and Tpp47 by using an in house third generation DAS-ELISA
- > SAG1 (p30) from Toxoplasma gondii requires maintain its native conformation to detect IgM antibodies
- Multi-epitope chimeras as a syphilis IVD working pair (RAG0046/RAG0046BIOT) for IgG+IgM antibody detection by a double-antigen sandwich (DAS) immunoassay format
- Preparation of a detection complex RAG0109BIOT-Strep-HRP ready-to-use for CMV IgM immunocapture assay
- Nucleoprotein and spike glycoprotein, a combination of two quite different antigens for COVID-19 in vitro diagnostic.

List of citations

You can also take a look at the blibliography performed with our products:

- Ulrike Ripp. (2013) Suitability of LipL32 as antigen in a screening-ELISA for the detection of Leptospira-antibodies in pigs. Thesis submitted to Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzign
- Abass E, Bollig N, Reinhard K, Camara B, Mansour D, Visekruna A, Lohoff M, Steinhoff U. (2013) rKLO8, a Novel Leishmania donovani - derived recombinant immunodominant protein for sensitive detection of visceral leishmaniasis in Sudan. PLoS Negl Trop Dis 7(7): e0002322
- Zafra A, Castro AJ, Alché JD. (2018) Identification of novel superoxide dismutase isoenzymes in the olive (*Olea europaea* L.) pollen. BMC Plant Biol 18(1): 114
- Mollett G, Bremer Hinckel BC, Bhattacharyya T, Marlais T, Singh OP, Mertens P, Falconar AK, El-Safi S, Sundar S, Miles MA. (2019) Detection of Immunoglobulin G1 Against rK39 Improves Monitoring of Treatment Outcomes in Visceral Leishmaniasis. Clin Infect Dis 69(7): 1130-1135
- Bremer Hinckel BC, Marlais T, Airs S, Bhattacharyya T, Imamura H, Dujardin J-C, et al. (2019) Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLoS Negl Trop Dis 13(5): e0007353

PRODUCT MANIPULATION

SHIPPING

Our IVD reagents are in liquid or lyophilized (dry powder) format. Their shipment will be made with dry ice in case of being in liquid format, or at room temperature in case of being in lyophilized format.

STORAGE

If the reagent is in liquid format, upon arrival, it should be aliquoted in order to avoid repeated freezing and thawing cycles and stored at -20°C to -80°C. Reagents should be maintained frozen at high concentrations. If the reagent is in lyophilized format, upon arrival, it should be stored at 4° to -20°C in vertical position, avoiding all possible humidity and maintaining the vials dry. Once reconstituted, it should be stored as previously indicated.

DEFROST

In order to defrost the product, maintain the aliquot at 25°C without shaking to avoid aggregation.

MANIPULATION

Before making test dilutions and after the protein has been defrosted, it is recommended to remove possible protein aggregates by centrifuging the stock solution, avoiding alterations in the immobilisation of the biomolecule to the solid surface.

During shipment, small volumes of product will occasionally become entrapped in the seal of the product vial. For products with volumes of 200 μ l or less, we recommend tapping the vial on a hard surface or briefly centrifuging the vial in a tabletop centrifuge to dislodge any liquid in the containers cap. Although proteins are expressed in non-pathogenic *E. coli* and *P. pastoris* and bacterial integrity is destroyed during purification, the protein preparation should be handled as potentially infectious.

STABILITY

The reagent will remain stable for a minimum of six years if the indicated storage conditions are met. After that, a retest will be required.

DISTRIBUTORS

Rekom Biotech is a global born company and, as such, international markets are the basis of the company activity.

In most of these markets we **work directly with our customers** with the aim of offering them direct assistance and continuous support. In some others, we work with distributors in order to facilitate our customers the access to our products.

We are currently looking for established distributors in South America, Middle East, Russia and India. If you are interested in distributing Rekom Biotech's IVD reagents in one of these areas, we will be happy to hear your proposal.

CHINA

Ambigen (Nanjing) Biotech Co., Ltd.

Rm 302, Bldg #C,No.288 Qinhuai Ave, Lishui District, Nanjing, CHINA

Phone: 400-025-0860

Email: info@ambigenbio.com

AmkiGen 安必进生物

JAPAN

Tokyo Future Style, Inc.

TCI A-13,1-6, Sengen 2-Chome, Tsukuba City Ibaraki Japan, zip# 305-0047

Phone: +81-29-851-9222 Fax: +81-29-851-9220

Email: info@tokyofuturestyle.com

Filgen Inc.

1-1409, jonoyama, Midori-ku, Nagoya, Aichi-pref. 459-8011 Japan

Phone: +81-52-624-4388 Email: biosupport@filgen.jp

SINGAPURE AND INDONESIA

Afirmus Biosource Pte Ltd

2 Kallang avenue #06-32 Singapore 339407

Phone: +65-66046872 / 81637412 Email: enquiry@afirmus.com

SOUTH KOREA

MORE BIO

F#810, Testa Tower 25 Misagangbyeonseo-ro, Hanam-si Gyeonggi-do 12918, Korea

Phone: +82-2-406-2942 Fax: +82-31-735-2944 Email: info@morebio.co.kr

TAIWAN

TFS Taiwan

7F., No.5, Sec.1, Dunhua S. Rd Taipei City 105, Taiwan

Phone: +886-2-2578-5958 Fax: +886-2-2578-9826

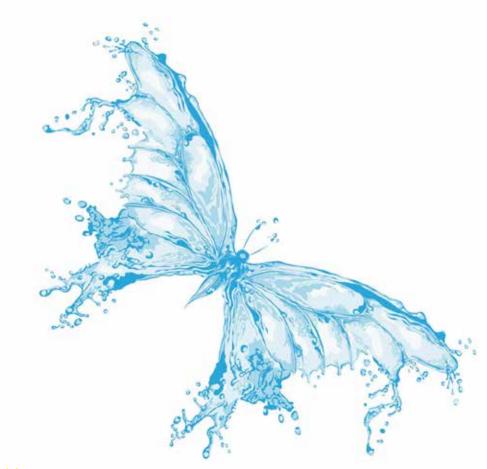
Email: info-tw@tokyofuturestyle.com

Product Index

1F8	10,24	
a-lactalbumin	38	
aC1 accein	20	
dS1-casein	38	new
β-casein	38	
O la sta globulia	20	
р-iactogiobuiii. к-casein	30	new
K-CaseIII	36	
Alt a 1	36	
Anti CCD	Εı	
Anti-Chagas	54	new
Anti-Chagas Anti-TB	57	new
Anti-CDA7/CDA8	5/1	
Anti-HBcAg	54	new
Anti-p30 (SAG1)	54	new
Anti-pp52	54	
Anti-pp65		
4.11.4.50	E 4	
Anti-pp150	30	new
Ara h 9	30	new
Art v 1	32	
Art v 3		
AI C V 3	52	*
B13	10.24	
Bc28.1		9
BcSA1		470
BcMSA1		
Bet v 1		
Bet v 4		
	52	_
CagA (Domain I)	58	CS
CagA (Domain III)	58	CS
Can f 1	30.40	Q
Can f 5		
Cas s 5	58	-
CFP10		
CED10-ESAT6 17	26 42	_
ChimASFV	_ 5, . <u>_</u>	CS
ChimBc	23.42	
ChimBg	23.42	new
-····-	,	**

new new	ChimChagas1	.10	,24 ,42 ,42 ,42 .12 .17	,42, ,44, ,42, .12, .24, .13, , ,42,	,48 ,48 ,44 ,42 ,42 ,42 ,42 ,58 ,58 ,45
	Der f 2 Der p 10				
	EEBNA1Equ c 1EDENV4EDIIIDENV-4 isotypesEnolase.	 	 		.13 .30 .13
ş	Fel d 1FlagellinFlagellin BFRA.				.18 ,23
	Gad c 1		.14	,45 ,	.38 ,48 .13
(cs	HBcAg HBeAg HBsAa.				.14

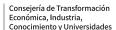
Par j 2	33,4 33,40,4 33,4 33,4	40 45 40 40 40
S1 (RBD) (COVID-19)	33,4	10
TmpA Tpp15 Tpp17 Tpp47 Tri a 19	17,4 17,4	15 15 15
VLP (core HBV) VIsE VP1		
ZEBRA	1	13



Certain uses of some of these products may violate existing or pending patent claims in a specific country. It is the user's responsibility to determine if the use of this product constitutes such a violation in the country where the recombinant antigen is going to be used. Rekom Biotech is not responsible for patent infringements or other violations that may occur by the use of this product in a specific country.

BIC-Granada, Avda. Innovación, 1 - 18016 Granada (Spain) - Tel: +34 958 63 70 85

E-mail: info@rekombiotech.com - Web: www.rekombiotech.com



Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa

Agencia de Innovación y Desarrollo de Andalucía IDEA

An ISO 9001 and ISO 13485 certified company - ensuring commitment to quality standards globally -